As the world-leader in concrete distributor booms up to 62 m vertical reach, Putzmeister has been working on computer controlled multi-articulating
booms since 1986. To increase their effibooms since 1986. To increase their efil-
ciency, computer controlling has been introduced to guide the boom-tip in any desired direction, preferrably horizontally The FH 26 has been developed as a
5 -arm hydraulically articulating and 5-arm hydraulically articulating and
computer controlled flexible handling system to fill the gap between standard robotic equipment and the "master and slave systems", in the industry.

Competent Partners

 For Skywash.Based on the PM-Technology the Skywash-system was developed and operate consortium. by this consortium.

- Putzmeister

Main contractor, system integrator, mechanical and hydraulic systems.

■ AEG

Robot control and software, electric system.
■ Fraunhofer Institute IPA-TEG
Scientific support.

- Dornier

Three dimensional laser scanner.

■ Deutsche Lufthansa AG

Development partner and launching customer.

Skywash
A Robot for Aircraft Washing.

)

Putzmeister Products and Services.
PM-Concrete Pumps
PM-Putzmeister Mortar Machines G mbH
PM-Tunnelling Equipment
PM-Industrial Pumps
PM-Robotics
PM-Consulting and Data Technology PCD
PM-Academy
PM-Marketing-Services

Putzmeister-Werk
Maschinenfabrik GmbH^{2} Maschinentabrik \square-72631 Aichtal P.O.Box 2152
D-72629 Aichtal
$(07127) 599-0$ Tilex $(07127) 599-0$
Fax $(07127) 599-520$

The unique machine for clean and shining aircraft making passengers feel comfortable and safe.

Washing Aircraft

Aircratt have to be washed at regular reasons prescribedical and technical reasons prescribed by both manufactur-
er and airlines. The SW 33 Skywash er and airlines. The SW 33 Skywash
performs the important tasks in washing performs the important tasks in washing
a fleet of aircraft of sizes ranging from a B 737 to a B 747 , or an A 320 to an A 340:

To achieve better washing results nin minimum manpower and shorter und lime.
To wash at any airport outside or iside the hangars with minimu infrastructural requirements.

- To wash any type of aircrafts with sizes ranging from B 737 to B 747 according to specific customer requirements.
- To wash the maximum aircraft surface

PM flexible handling system FH 26 its skywash figuration SW 33 Diesel EURO 2 low emission engine nd sensor brush with specific andling system
to utilize the very short aircraft ground time effectively.

Image Quality. The world's leading airlines recognize and clean airplanes for their company
ander culture and image. Passengers feel safer when they enter a spotless plane,
knowing that airlines, which keep the knowing that airlines, which abep all safe-
surface in order, also care about all ty details.
For this and other reasons, airlines im-
pose regular washing schedules on their pose regular washing schedules on their
planes, which ask for aircratt-surface planes, which ask for aircratt-surface
cleaning. The lengths of intervals cleaning. The lenghs of intervals many factores, e.g. long or short distance operation, pollution, paint.

In 1993 the SW 26 Skywash was tested successfully during 6 months by on several aircraft B $747-400$ and
B $737-300$. The suitability of the skywash with realistic chances for positive optimizations has been proven. Based on their current practical experience Deutsche Luthansa expect that an
adequate return on investment with adequate return on investme Based on the test results of the smaller
SW 26 the configuration of SW 33

2. Benefits for the airline.

With two Skywash units working in paralcan be obtained in comparison with manual washing:

- Extrentely reduced washing groundtime leads to higher aircratt availabilit and more flexibility in aircraft and washing scheduling.
E A robot control, which is operator initiated and monitored, g
reliable and safe washing
- Robot control avoids human errors
- Superior washing results lead to increased cleaning intervals even with difficult paint (B 747/400).
- Only small areas of the lower parts of the aircrafts have to be washed manually.
- The flexibility of the system allows easy adaptation to washing concepts, aircraft types and washing areas.

Tescoic contro and adation requlation of the sensor monitored washing brush

Technical Description.

Washing Brush System All aeroplanes are only accurate to a
certain extent. are only accurat
The washing brush measures the pressure applied onto the plane's sur
ace structure.

Robot Control System
The system is applicable to all aircraft
ypes. AEG Robot Control IRC 250 type manipulalor.
in programmed task execu
High accuracy for the fast movements
required.
The washing area and special equipprogrammed according to customer specifications.
Offline Programming
Offline Programming. expensive
All movements of the manipulator are generated offline.
Excellent simulation provided for
EBK-Position Sensor System The position of Skywash in relation to the memorized brush motion programme precisely on the real aircraft surface is achieved with the help of EBK and spea certain one by one metre area close to the aircraft.

- The Dornier laser camera measures space geometry three dimensionally metry in front of the manipulator and transfers the data to the robot control which compares the actual position of model of the aircraft and calculates out of this position and orientation the aircraft in the Skywash coordiadaptes system. With this information the can be recalculated on to the actual position.
Truck
Washing at any location must be pos-
sible. Standard on-road Mercedes Benz 5 axle-chassis MB 4838. with low emissions to permit opera tion in closed hangers.

Peripherals.

minimum infrastructure needs to be ovided.
Automous system regarding ener gy and detergent.

■ Manipulator performs fine adaption Elaborated emergency stops. - Geometric deviations of more than 1 m can be compensated.

Collision Control System.

 Collisions of the manipulator with the plane could become very expensive.by two computers.

- Software limiting switches to each articulation in reference to the posi tions are provided.

Boom Structure SW $\mathbf{3 3}$.
AB 747 has to be washed
A B 747 has to be washed from fou
locations and a B 737 from two

- Large multi-section manipulato boom with 33 m vertical reach and
■ High flexibibity by 10 programmable
- Operations under narrow geometric conditions.

Working Process
Eachition ine two Skywash units takes position in the center between wing-tip
and fuselage front precise working positioar. To find the camera (EBK), mounted at the front of Skywash acts as a navigation assistanc It focuses the plane and helps the opera tor to find the precise working position comfortable. At this position the ideal picture on the screen complies with the
picture of the plane which the camera picture of the plane which the camera
reads at that moment. Atter stabilizing
he Skywash with outriggers on the ground, the boom is folded out autom
cally, whilst the laser camera and the cally, whilst the laser camera and the and orientation of the aircraft relative to
the Skywash unit. Moments later, the Putzmeister sensor washing brush at the boom-tip touches the surface of the plane and moves over it path by path with defined centrifugal force pressing
the rotating brush fibers towards the surface, being continuously injected with face, being con
jet-clean toam.

The washing path for the brush is approx. 2600 m on a Boeing 747-400, and approx. 600 m on a $737-300$. This covers approx. 90% of the Jumbo. The
rest of the surface is done manually and simultaneously to the robotized washing programme. Parallel use of 2 Skywash units at the aircraft reduces ground-time,
especially with Wide-Bodyplanes.

Flughafen Frankfurt / Main

